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This paper presents initial work on integrating a large language model (LLM) with structured multimodal perceptions,
including computer vision and sensor data, to enable more advanced contextual reasoning for human-robot interaction (HRI)
systems. We implement an approach that encodes multimodal input into a structured log format for the LLM to interpret,
demonstrating promising skills in querying object locations, assessing behavioral patterns, and logical reasoning. For instance,
when asked about a misplaced phone, the system can infer its likely placement on a specific table by correlating action
timestamps across spaces. This initial integration thus indicates the significant yet underscored potential of large language
models to enhance collaborative human-robot interaction through integration with additional modalities while needing future
improvement in areas like personalization and real-world robustness.

CCS Concepts: • Computer systems organization → Robotic autonomy; • Computing methodologies → Logical
and relational learning; Generative and developmental approaches; • Hardware → Sensor applications and
deployments; • Human-centered computing→ Usability testing.
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Large language models (LLMs) have shown increasing promise for enhancing robots’ natural language and
communication abilities for more intuitive human-robot interaction (HRI). However, additional multimodal
integration presents opportunities to enhance contextual understanding and reasoning. By combining LLMs’
language generation capabilities with computer vision, audio, inertial sensors, and other modalities, robots may
move towards more experientially meaningful communication, recognition of user needs and emotions, and
increasingly helpful situated interactions.
This paper presents initial work combining LLMs with structured multimodal data as a step toward more

advanced ambient reasoning in HRI systems. We implement an approach that encodes computer vision classifica-
tions and sensor logs into a common representation, which an LLM processes to produce insightful narratives
and responses. Our results demonstrate promising interpretive skills, including location inference, assessment of
behavioral patterns, and logical reasoning about implausible scenarios. Specifically, our system showcases the
capability to pinpoint the likely location of a misplaced phone by correlating action timestamps across different
monitored spaces. Furthermore, when queried about an individual’s work habits, the LLM deduces periods of
activity and inactivity based on actions suggestive of disengagement from desk work. These promising ambient
reasoning skills highlight the potential of LLMs to extract useful insights from multimodal data.
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These interpretive skills could allow robots to interact more intuitively by grounding conversations in shared
environmental knowledge and practical user needs. For instance, by determining periods of focused work versus
disengagement, a robot assistant could politely offer help when a user appears distracted rather than interrupting
important tasks. Furthermore, deducing and communicating object locations could enable more natural directives,
e.g., suggesting to “check near the doorway table” for a misplaced item. While conditional and requiring extensive
real-world adaptation, these promising ambient reasoning capacities indicate LLMs’ untapped potential for
enhancing situated human-robot collaboration and assistance. Additional multimodal integration may enrich
contextual understanding further, moving towards HRI that is not just interactive but cooperative, helpful, and
responsive to users’ implicit situational needs.

1 MOTIVATION: MULTIMODAL SENSEMAKING AND LANGUAGE MODELS
Integrating Large Language Models (LLMs) with multimodal sensor data presents an opportunity to enhance
human-robot interaction (HRI) by enabling robots to develop a more comprehensive understanding of their envi-
ronment and users. By leveraging LLMs’ natural language processing capabilities to interpret and contextualize
data from various sensors, robots can better comprehend and respond to the complexities of human behavior and
emotions. While the examples provided in this paper focus on understanding contextual information, such as
object location and human activity, this is an essential foundation for more advanced reasoning in HRI. Accurately
interpreting context allows robots to better understand and respond to users’ needs, paving the way for more
intuitive and meaningful interactions.
Sensemaking in Smart Environments Integrating large language models (LLMs) with multimodal sensor data
in smart environments presents an opportunity to enhance contextual understanding and sensemaking, akin
to the exploration and organization capabilities demonstrated by Sensecape [8]. This integration allows for the
interpretation and meaningful interaction with the physical world through sensor data, offering a nuanced view
of our surroundings and enabling dynamic, intelligent responses within these environments.
Physical-World Grounding Grounding LLMs in the physical world enhances robots’ and systems’ environ-
mental interaction and understanding. KNOWNO [5] provides a framework for LLM-based planners to recognize
knowledge gaps and seek help, using conformal prediction for statistical task completion guarantees with minimal
human intervention. LLM+A [2] prompts LLMs for robotic tasks, predicting actions’ consequences and generating
affordance values to improve plan feasibility. Xu et al. [11] demonstrate leveraging LLMs for task completion by
interpreting sensor data, aiming to embed intelligence into cyber-physical systems. GLAM [1] aligns LLMs with
environments via online reinforcement learning, updating policies for better goal-solving performance.
Effective Communication and Interaction Dynamics Effective communication and interaction dynamics
are essential for engaging HRI. LLMs enhance dialogues with advanced language capabilities, while multimodal
learning models interpret non-verbal cues like gestures, enriching interactions. This synergy supports well-timed
responses, demonstrated by recent studies [6, 10] and applications such as robot-assisted feeding [4], emphasizing
the importance of multimodal strategies for effective communication.

Our work complements prior advancements in LLM grounding by integrating visual and sensor data to refine
activity interpretation in HRI. This methodology deepens robots’ comprehension of environmental contexts and
human behaviors, providing precise contextual insights.

2 INTEGRATION OF LLMS AND MULTIMODALITY FOR INTERACTION
Our deployment showcases two key applications of our system in real-world contexts: 1) Activity Logging
and Interpretation: Leveraging visual and sensory data, our system logs activities, exemplified by locating a
misplaced phone through data pattern analysis without direct visual detection (Figure 1). This underscores our
system’s capability to derive and narrate activities from multimodal inputs. 2) Query Response and Logical
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Reasoning: The system demonstrates refined reasoning, answering queries on an individual’s work habits by
interpreting spatial and usage data and logically addressing unlikely scenarios, such as the inquiry about an
’element’ on a table, evidencing adept context understanding (Figure 2). These scenarios illustrate our system’s
adeptness at parsing multimodal data for insightful narratives and responses, indicating its utility for assistive
intelligence. Transitioning to real-world deployment highlights personalization, robustness, and safety challenges,
yet these deployments point towards a viable trajectory for ambient intelligence applications.

In this deployment, visual and sensory scenes are structured for interpretation by an LLM (i.e., LLama-70B [9]),
with video processed by Squeezenet [3]. We fine-tune the model using Charades, a dataset centered around
human activity recognition of indoor environments [7]. Multimodal data is annotated with location and time
stamps, ensuring precise activity registration.

Location 1 - Timestamp: 8, Action Class: Sitting in a chair;
Location 2 - Timestamp: 8, Action Class: Person Not In Frame;
Location 1 - Timestamp: 9, Action Class: Sitting at a table;
Location 2 - Timestamp: 9, Action Class: Person Not In Frame;
Location 1 - Timestamp: 10, Action Class: Person Not In Frame;
Location 2 - Timestamp: 10, Action Class: Person Not In Frame;
Location 1 - Timestamp: 11, Action Class: Person Not In Frame;
Location 2 - Timestamp: 11, Action Class: Holding a 
phone/camera;
Location 1 - Timestamp: 12, Action Class: Person Not In Frame;
Location 2 - Timestamp: 12, Action Class: Putting something on 
a table;
Location 1 - Timestamp: 13, Action Class: Person Not In Frame;
Location 2 - Timestamp: 13, Action Class: Opening a door;
Location 1 - Timestamp: 14, Action Class: Person Not In Frame;
Location 2 - Timestamp: 14, Action Class: Person Not In Frame;

Time

Location 1

Testbed Map

Fig. 1. The figure depicts a system that uses multimodal
data to log activities in a space, which a language model
then interprets to create narratives and answer queries
about the events.

RESPONSE: Based on the sensor data provided, your phone is likely located on 
the table near the doorway (location 2) at timestamp 12, the action class for 
location 2 is "Putting something on a table" placing an object, possibly the 
phone, onto the table. Additionally, the action class for location 1 at 
timestamp 12 is "Person Not In Frame," suggesting the person was not sitting 
at their desk, but rather near the doorway where the phone was last seen.

QUERY: I have lost my phone.  Where could I have left it?

Time

Fig. 2. We ask about a lost phone, and the LLM pin-
points its likely location near the doorway on a table at
timestamp 12, using sensor data to infer the phone was
placed there when the person was not at their desk.

Figure 1 illustrates our integrated system’s capability to log and interpret activities within a space over time.
The visual and sensor data are synchronized to create a detailed log of actions. A language model processes
this log, extracting narratives and responding to queries about the recorded activities. The model is then able to
identify the location of a misplaced phone despite the phone never being directly recognized in the data log. The
language model infers the phone’s location based on the correlation of actions logged at various timestamps,
highlighting the nuanced understanding of our language model.
Further demonstrating the model’s discernment, when queried about the work habits of the monitored

individual, the language model deduces periods of activity and inactivity. The LLM surmises that the person
was not working when absent from their desk or when engaged on their phone, indicating non-work-related
behavior. To assess the model’s consistency and grasp of practical scenarios, we posed improbable queries, such
as whether the individual had placed an ‘element’—a term ambiguously referring to a chemical element—on the
table. The language model aptly responded that such an event was implausible, reflecting its logical reasoning
capabilities and understanding that such items are neither transportable in a typical setting nor expected to be
found in an office environment.

Our proposed system demonstrates promising capabilities in interpreting multimodal data to produce nuanced
narratives and responses, which are integral for intuitive interactions. It showcases discernment in ambient
reasoning, location inference, and assessment of behavioral patterns, highlighting the potential for assistive intel-
ligence applications. However, realizing this potential requires overcoming challenges in real-world integration,
such as the need for greater personalization, robustness, and adaptable safety mechanisms when transitioning
from controlled environments with structured inputs to unconstrained human interaction.
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3 CONCLUSION
In this paper, we have taken an initial step toward exploring the potential for Large Language Models (LLMs)
and multimodal learning to enhance cognitive capabilities for Human-Robot Interaction (HRI). Our goal was to
investigate integrating these methods as a promising new direction to facilitate more natural and meaningful HRI.
Our proposed system demonstrates promising capabilities in interpreting multimodal data to produce nuanced
narratives and responses—skills integral for intuitive interactions. We believe combining LLM’s sophisticated
language processing and multimodality’s rich perceptual input lays the groundwork for advancing robots’
understanding of contextual and emotional cues. While this initial integration shows promising capabilities,
real-world deployment would involve significant challenges still to be addressed.
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