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ABSTRACT
As robots become more ubiquitous in our everyday lives, it is in-
creasingly important to design robot agents that can interact flu-
ently with everyday users. Prior work on collaborative fluency
demonstrates that metrics outside of task success are important for
human collaborators and influence their perceptions of the robot
and willingness to continue to collaborate. As such, it is important
for robots to evaluate collaborative interactions by factors, such as
fluency, equitability, and safety. In order to enable robots to under-
stand these concepts and synthesize them into a reward function,
we turn to vision-language models (VLMs). In this work, we pro-
pose the use of VLMs to evaluate collaborative interactions and
score them on along factors in collaborative norms. As a first step,
we aim to determine whether the VLMs preference-based rankings
of different interactions align with actual human ratings. This in-
vestigation will inform whether VLMs can be used a proxies for
human evaluators of collaborative robot behavior, and will inform
future work on allowing robots to reflect upon their interactions to
update their policies.
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1 BACKGROUND
As robots enter our homes, they will increasingly interact with
one person, repeatedly. A home robot helping someone clean and
fold laundry will aid in this endeavour several times a week over
the course of months or years. Over each interaction, the robot
should continuously learn to collaborate more fluently and effi-
ciently with the human partner. A robot which only maximizes
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Figure 1: We begin by constructing an ontology of team dy-
namics.

task success may not focus on the human partner’s preferences,
and may cause the team to reach a task outcome the human partner
prefers. In value alignment [1], the task is exactly achieving the
human’s preferences. Cooperative inverse reinforcement learning,
a paradigm for value alignment, defines the task as achieving the
human’s objective, captured by a reward function the robot must
learn through observation and interaction with the human [3]. Even
when the reward function is fully specified by human preferences,
a collaborative robot who completely takes over the task or one
who performs redundant tasks, is not a preferable teammate.

Collaborative fluency is a set of metrics that aims to capture
how well team members perform a coordinated meshing of their
joint actions [5]. Measures of fluency include the amount of idle
time for each partner, the amount of concurrent activity, and the
functional delay: the accumulated time between the completion of
one agent’s action and the beginning of the other agent’s action in
a sequential task. As we seek to develop a more collaborative robot,
collaborative fluency metrics measure how effective an agent is at
coordinating its behavior with its human partner. While fluency
measures do not always directly correlate with task efficiency, they
can change people’s perception of collaboration.

Beyond fluency, effective robot collaborators should also main-
tain safe interactions [9], where the robot does not interfere in the
human’s workspace unless necessary for a coordinated task. The
robot should also be performing predictable and legible actions [2],
enabling the human to better plan ahead for their own contribution
to the task. Adhering to such collaborative norms may synergisti-
cally lead the team towards more effective role division, sequential
planning, and highly coordination fluency [10]. In situations in
which both robot and human have similar action capabilities, an
equitable collaboration occurs when each team member’s contribu-
tion is similar in magnitude [8]. Though this may not be desirable
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in situations in which the human team member has a disability
or the robot has restricted capabilities, equitable contribution may
also be an aspect of collaboration that human partners may prefer.
Lastly, effective partners are cooperative, in that they will when
necessary help team members on subtasks which are not their own
objective.

These human intuitions on what norms and behaviors comprise
effective collaborations (ie. what does it mean to be a good partner?)
are inherently difficult for robots to capture, and are difficult for
experimenters to define through a reward design [4]. As such, we
propose to leverage the conceptual knowledge of foundationmodels
[11] to enable robots to develop an understanding of collaborative
norms. We propose to query a VLM for pairwise comparisons of
annotated keyframes from videos of multiagent collaborations. In
recent work, Li et al. [7] uses an LLM to generate and assign team
member sub-goals for AI-AI coordination. Zhang et al. [12] proposes
a collaborative agent for human-AI coordination leveraging the
knowledge of the LLM to anticipate the human’s decision-making.

2 APPROACH
2.1 Ontology of Behaviors in Teamwork
Our first step is to scope the team dynamics we wish to evaluate. Us-
ing the framework for classifying teamwork breakdowns in Wilson
et al. [10], we investigate 3 areas in which teamwork can be effective
or break down: Coordination, Cooperation, and Communication.
We identify positive and negative examples of each component, and
refine the scope of our task domain to be tabletop manipulation (see
Figure 1). Communication involves the exchange of information
between two people: one who sends the message and one who
receives it. Therefore, communication failures occur when there’s a
delay or absence of the correct information being conveyed to the
appropriate person at the necessary time. Coordination depends
on accurate and timely efforts and inputs from every team member
[6]. By using suitable coordination methods, team members can
effectively organize, align, combine, and accomplish tasks while
conserving important resources. Ultimately, when team members
share similar attitudes and beliefs, they develop a consistent un-
derstanding of the task and environment. This results in improved
collective knowledge, more efficient decision-making, and supe-
rior team performance. Failures in cooperation occur when team
members lack the willingness and motivation to work together.
Consequently, they do not engage with each other or anticipate
one another’s requirements, which are essential for fostering and
sustaining a collective understanding.
2.1.1 MDP Formulation. We formulate a collaborative task as a
two-playerMarkov decision process (MDP) defined by tuple ⟨S,A =

{A1,A2},T , 𝑅⟩. S is the set of states. The action space of a game
with two agents is A = A1 × A2. The set of actions available to
each team member 𝑖 is A𝑖 . The transition function T determines
how the state changes based on a joint action by both agents, T :
S × (A1,A2) → S. 𝑅 : S → R is the team reward function.
2.1.2 Data Collection. Given our team dynamics ontology, we
record videos of two agents performing a collaborative task. The
videos will be a combination of human-robot, and human-human
teams. We construct a dataset 𝐷𝑟𝑎𝑤 = {𝜏𝑖 }𝑛𝑖=0, where each trajec-
tory 𝜏𝑖 = {(𝑠0, 𝑎10, 𝑎
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0), ..., (𝑠𝑇 , 𝑎

1
𝑇
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𝑇
)} is a sequence of states and

Figure 2: We prompt the VLM to generate a comparison be-
tween still frame image sequences from two different videos
of multiparty collaborations.

joint actions. In order to ensure diversity in positive and negative ex-
amples of teamwork, the data collection processmay involve confed-
erate team members. Given the videos, we will extract𝐻 keyframes
from each, and annotate the 𝐻 keyframes with object bounding
boxes, extracted using an object sementation model, such as RAM++
[13]. 𝐷𝑎𝑛𝑛𝑜𝑡 = {𝜉𝑖 }𝑛𝑖=0, where each trajectory 𝜉𝑖 = {𝑠 (0) , ..., 𝑠𝐻 }.
The queries we provide to the VLM will be 𝑄 = {(𝜉𝑖 , 𝜉 𝑗 )}𝑛𝑖,𝑗 .
2.1.3 VLMQueries. Our final task is to query the VLM for a pair-
wise ranking of the trajectories 𝜉𝑖 , 𝜉 𝑗 . We query the VLM using
for a ranking between the two interactions and a scalar rating of
the collaboration along the axes of collaborative fluency, safety,
equitability, and efficiency. Our pipeline is delineated in Figure 2.
3 PROPOSED EVALUATION AND FUTURE

WORK
We will evaluate our research question by comparing the VLM-
generated pairwise rankings within our dataset of keyframes from
collaborative task videos to human responses. We will run a user
study to collect human responses on the same set of pairwise queries
shown to the VLM. As a quantitative measure, we will evaluate the
degree of overlap in human versus VLM responses. As a qualitative
measure, we will additionally ask for users to explain their reason-
ing for each preferences, and compare whether the VLM-generated
responses produced the same reasoning.

4 CONCLUSION
As robots increasingly integrate into our daily lives, it becomes es-
sential to develop robotic agents capable of engaging smoothly with
regular users. For robots interacting repeatedly with such users,
it’s crucial they learn from past interactions to enhance future com-
munication and cooperation. Existing research on collaborative
fluency has shown that success in tasks isn’t the only metric that
matters; how humans perceive robots and their willingness to con-
tinue working with them are also influenced by other aspects of
the collaboration. Therefore, evaluating robotic interactions based
on factors like fluency, fairness, and safety is vital. To equip robots
with the ability to comprehend and apply these criteria, we aim to
evaluate the ability of VLMs to assess collaborative efforts and rate
them based on established collaborative standards. This study will
help determine if VLMs can help robots assess interactions, and
score interactions similarly to human evaluators.
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